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Abstract We introduce stochastic models for the transport of heat in systems described by
local collisional dynamics. The dynamics consists of tracer particles moving through an ar-
ray of hot scatterers describing the effect of heat baths at fixed temperatures. Those models
have the structure of Markov renewal processes. We study their ergodic properties in details
and provide a useful formula for the cumulant generating function of the time integrated
energy current. We observe that out of thermal equilibrium, the generating function is not
analytic. When the set of temperatures of the scatterers is fixed by the condition that in aver-
age no energy is exchanged between the scatterers and the system, different behaviours may
arise. When the tracer particles are allowed to travel freely through the whole array of scat-
terers, the temperature profile is linear. If the particles are locked in between scatterers, the
temperature profile becomes nonlinear. In both cases, the thermal conductivity is interpreted
as a frequency of collision between tracers and scatterers.

Keywords Fourier law · Conduction of heat · Large deviations of the current · Collisional
dynamics · Tracers and scatterers

1 Introduction

1.1 Lattice Hamiltonian Dynamics

Smooth Interactions The study of conduction of thermal energy by Hamiltonian lattice
dynamics has recently known a great deal of activity and numerical as well as analytical
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results have accumulated. For one-dimensional systems, general lattice Hamiltonian dy-
namics may be defined in the following way. Consider N particles of unit mass located on
a one-dimensional lattice with local positions and momenta (q,p) ≡ {(qi ,pi )}1≤i≤N , with
qi ,pi ∈ R

d . The Hamiltonian H takes the form,

H(p,q) =
N∑

i=1

[
p2

i

2
+ V (qi ) + U(qi − qi+1)

]
, (1.1)

where V represents the interaction with an external substrate and U a nearest-neighbor in-
teraction. Typically, the pinning potentials V and U are smooth and confining, i.e. they grow
to infinity when the norm of their argument goes to infinity. Much effort has been devoted
to the study of those systems in the case where the dynamics is a small perturbation of a
completely integrable one, namely the case of chains of weakly anharmonic oscillators. For
particles moving in a one-dimensional space, those are described for instance by potentials
of the form,

U(x) = 1

2
ω2x2, V (x) = 1

2
ν2x2 + 1

4
λx4,

with λ small. The situation may be summarized as follows [1, 6, 14, 19], the dynamics is
properly described by a Peierls-Boltzmann equation for phonons and under the assumption
that this equation holds, the conductivity is finite and may be computed as a function of
temperature and microscopic interactions. The temperature dependence is of the form 1/T 2.

Collisional Dynamics Another type of lattice Hamiltonian dynamics arises in systems
where the local dynamics is given by a billiard dynamics [7, 11, 12, 16]. Physically, dy-
namics of this type can model aerogels, namely gels from which one has removed the liquid
components and replaced them by molecules of gas. For instance, one may take in (1.1)
particles moving in one dimension, i.e. d = 1, and take a sequence of interactions Vk and
Uk ,

Vk(x) = fk

(
x

b

)
, Uk(x) = fk

(
x

a

)
, fk(x) = x2k

2k
.

In the limit k → ∞, one obtains,

V∞(x) =
{

+∞ if |x| > b,

0 if |x| ≤ b,
U∞(x) =

{
+∞ if |x| > a,

0 if |x| ≤ a
(1.2)

and the dynamics is described by a sequence of “collisions” between nearest neighbors.
When the difference of positions of two neighboring particles reach the parameter a, they
exchange their velocities and thus their kinetic energies. This model, originally introduced
in [16], was dubbed in [12] the complete exchange model. One may also simply consider
particles moving in square cells located on a one-dimensional lattice. While remaining con-
fined at all times, the particles collide with their nearest-neighbors through holes in the cells
walls. The first type of such models, in which the local dynamics is described by semi-
dispersing billiards was introduced in [7] and its thermal transport properties were studied
in [11]. General collisional models of this type have been introduced in [12] and may be de-
scribed as follows. Formally, the dynamics is described by a Hamiltonian of the form (1.1)
where interaction potentials is equal to zero inside a region �U ⊂ R

d with smooth boundary
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� of dimension d − 1, and equal to infinity outside. Likewise, the pinning potential V is as-
sumed to be zero inside a bounded region �V and infinity outside, implying that the motion
of a single particle remains confined for all times. The regions �U and �V being specified,
the dynamics is equivalent to a billiard in high dimension.

Physical Observables Dynamics described by smooth interactions and collisional dynam-
ics have several qualitative differences and similarities that we briefly point out. In both cases
the interactions between components occur only between nearest neighbors on a lattice and
thus the evolution of the local energy may be written as,

En(t) − En(0) = Jn−1→n([0, t]) − Jn→n+1([0, t]). (1.3)

In the case of smooth interaction potentials, the time integrated energy current between sites
n and n + 1 takes the form

Jn→n+1([0, t]) =
∫ t

0

1

2
(pn(s) + pn+1(s)) · ∇U(qn(s) − qn+1(s))ds

whereas in the case of collisional dynamics,

Jn→n+1([0, t]) = 1

2

∑

0≤k≤Nt

[
p⊥

n (Sk
n)

2 − p⊥
n+1(S

k
n)

2
]
, (1.4)

where the component of the vector pn in the direction of the unit vector n̂ = ||qi −
qi+1||−1(qi − qi+1) at the time of collision is denoted by p⊥

n = pn · n̂. Nt counts the number
of collision up to time t and (Sk

n)k is the sequence of collision times. Note that in the com-
plete exchange model, p⊥

n = pn and the time integrated current between two neighbors is
simply the sum of all kinetic energy exchanges between the particles. Assume now that such
systems are thermalized at different temperatures at their boundaries. In order to understand
the transfer of energy from one side to the other, one is interested in the ergodic behavior
of the current and in computing limt→+∞ t−1Jn→n+1([0, t]) which gives the average current
of energy in the stationary state. Because of the special form of the time-integrated current
(1.4), a natural guess to make is that local equilibrium settles in and to assume that this limit
is given by

lim
t→+∞

1

t
Jn→n+1([0, t]) = ν(Tn)(Tn − Tn+1) (1.5)

where ν = limt→∞ t−1Nt is the frequency of collisions between neighbors under local equi-
librium conditions. Tn = 1

2 〈p2
n〉 is the average kinetic energy of the particles. The conductiv-

ity is thus identified to the frequency of collisions. Typically, the collisions occur when the
particles get near the boundaries of their cell and thus the frequency of collisions is roughly
proportional to the average number of visits to the boundaries per unit time. Because the par-
ticle travels freely within its cell, this is proportional to

√
Tn. Once this relation is taken for

granted, then the temperature profile may be computed because, by conservation of energy,
the current must be constant throughout the system,

lim
t→+∞

1

t
J(n−1)→n([0, t]) = lim

t→+∞
1

t
Jn→n+1([0, t]).

This is equivalent to a finite difference equation for the set of temperatures of the local
equilibrium distribution. Numerical studies show that the identification of the conductivity
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with the frequency of collisions holds true to a very high degree of accuracy in a wide class
of collisional dynamics, when the individual particles collide rarely. In particular, it was
shown [12] that it does not depend on the detailed chaotic properties of the local dynamics
as it was originally assumed [11].

Although such a simple way to compute heuristically the heat conductivity does not exist
in weakly anharmonic systems, there are similarities between the two dynamics considered
in a weakly interacting regime and written in proper coordinates. In both cases, a linearized
Boltzmann equation describes properly the thermal properties of the systems. Depending on
the context, each mode or particle behaves as if it was coupled to an ideal stochastic heat
bath and the intensity of the coupling depends on the microscopic interactions and yields
the thermal conductivity. This quantity is also identified with the frequency of collisions
between the components (phonons or particles) in equilibrium. More precisely in the case
of collisional dynamics, each particle moves freely within its own cell and interact with its
neighbors as if those were part of infinite thermal bath with fixed temperature. The Boltz-
mann type approach is successful in computing theoretically the conductivity from micro-
scopic interactions and local temperature as was checked in numerical simulations [1, 12].

1.2 Models and Results

An important feature of the collisional models is that the evolution of energy occurs at
discrete (collision) times and amounts to an exchange of kinetic energy between neighbors.
The length of the interval of time between two successive collisions depends itself on the
kinetic energy of the particle, which fixes the

√
T dependance of the collision frequency.

Our idea is to build and analyze models which are stochastic from the start and share the
general structure described by the Boltzmann description sketched above.

Thus, we want to consider dynamics which consists of a mixture of integrable Hamil-
tonian dynamics and collisions with stochastic heat baths. The models are made of scatterers
described as heat baths and tracer particles transferring energy between those “hot” scatter-
ers. The tracers move in a one-dimensional interval in which the scatterers are located on a
lattice. The motion of a tracer is ballistic except when it encounters a scatterer. At that point
its speed is randomly updated according to a law which depends on the temperature of the
scatterer. The temperature of the scatterers is fixed by the condition that in the stationary
state, no energy is exchanged on average between the scatterers and the tracers. In spirit,
this is similar to the so-called self-consistent chain of (an)harmonic oscillators [3–5], but in
our case it may be naturally interpreted as a condition ensuring that the energy transfer per
unit time between scatterers is constant throughout the system.

Relation to Previous Works Geometrically, the systems we study are analogous to the ones
introduced and studied in [9, 10, 13, 15]. The scatterers of our models are similar to the en-
ergy storing devices of those models. However, in our case, the dynamics is stochastic from
the start and the action of the scatterer models the one of a very large system. As in those
models we distinguish two types of dynamics. Depending on whether the particles are con-
fined or not between the scatterers, we derive a non-linear or linear profile of temperatures
for the scatterers. Namely, in the case of confined tracers, we obtain in the continuum limit:

T (x) =
(

T
3
2

L + x
(
T

3
2

R − T
3
2

L

)) 2
3

, x ∈ [0,1]

and for wandering tracers:

T (x) = TL + x(TL − TR), x ∈ [0,1].
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Moreover, we compute the cumulant generating functions and we show that is not an-
alytic in both cases. Those two types of behaviours described by wandering or confined
tracers seem to be universal in systems described by a collisional dynamics at a microscopic
level [9–13, 15, 16]. Among the collisional dynamics described above, two typical exam-
ples are given in [16] and [11, 12]. In [16], a detailed numerical analysis of the complete
exchange model is provided. Fourier’s law holds and the temperature profile is linear. In our
framework this may be understood as an instance of wandering tracer dynamics. Indeed,
in the complete exchange dynamics, it is not only the energy that is exchanged between
neighbors but also the momenta of the particles. Thus, the dynamics is more similar to the
one of particles traveling through the whole system. In [11, 12], models where the particles
are confined and exchange only a fraction of their energy are considered. They display a
temperature profile identical to the ones of the confined tracers.

Organisation of the Paper We define the stochastic process generated by the free motion
of a particle in a box. The particle collides with the walls of the box and its speed is ran-
domly updated according to some fixed probability law. We compute the unique invariant
measure for this process. This justifies rigorously the updating rule used in computer sim-
ulations [20]. In Sect. 3, we describe and analyze the properties of the wandering tracer
model in its simplest version, i.e. when a tracer encounters a scatterer it is deterministically
transmitted on the other side of the scatter. We find that when the temperatures are fixed
and the temperatures in the bulk chosen such that the transfer of energy is constant through-
out the system, then the temperature profile of the scatterers is linear. The identity between
thermal conductivity and frequency of collisions between tracers and scatterers appears as a
natural consequence of the renewal theorem for Markov renewal processes. Next, we study
the cumulant generating function of the time-integrated current of energy. We give a rather
explicit formula allowing to compute derivatives of any order. A striking feature is the lack
of analyticity of the generating function. The origin of this phenomenon may traced back to
the presence of particles with arbitrarily low speed. Nevertheless, we are able to show the
validity of the Green-Kubo formula for the conductivity. The final section 4 is devoted to
the analysis of the dynamics of confined tracers. In that case, we find that the condition that
there are no exchange of energy between the scatterers and the particles imposes a non-linear
profile of temperature.

2 A Random Speed Particle

We first describe in detail the elementary building block of the models we intend to study
in the following sections. We consider a single particle moving in the interval [0,1[ with
a positive velocity. When the particle reaches 1, it is absorbed and re-emitted in 0 with a
random positive velocity.

To be more precise, we consider an i.i.d. sequence (vi)i=1,2,... such that vi > 0 a.s. for
all i. The particle is re-emitted from 0 with speed vi after its i-th collision with the wall at 1.
The time to reach 1 again is then τi := 1/vi .

Suppose the particle starts at time t = 0 at position q0 ∈ [0,1[ with velocity p0 > 0. The
time of the first collision with the wall at 1 is

S0 = S0(q0,p0) := 1 − q0

p0
,
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and the time of the n-th collision is

Sn := S0 + τ1 + · · · + τn, n ≥ 1.

We define now a stochastic process (qt ,pt )t≥0 with values in [0,1[×R+

(qt ,pt ) = F(q,p, t, (τn)n≥1) :=
{

(q0 + p0t, p) if t < S0,

(
t−Sn−1

τn
, 1

τn
) if Sn−1 ≤ t < Sn, n ≥ 1.

We denote by Bb the set of all bounded Borel f : [0,1[×R+ �→ R and we set

Ptf (q0,p0) := E(f (qt ,pt )) = E(f (F (q,p, t, (τn)n≥1)), (q0,p0) ∈ [0,1[×R+.

Then it is not difficult to prove that

Proposition 2.1 The process (qt ,pt )t≥0 is Markov and (Pt )t≥0 has the semigroup property:
Pt+s = PtPs , t, s ≥ 0.

2.1 The Invariant Measure

We assume now that

μ := E(τi) = E(1/vi) < +∞,

and that the distribution of τi is non-lattice, i.e. there is no δ ≥ 0 such that P(τi ∈ δN) = 1.
This assumption is not necessary but it simplifies the presentation; for the applications we
have in mind, the distribution of τi has a density and is therefore always non-lattice.

We denote the law of τi by ψ(dτ) and the law of vi = 1/τi by φ(du). The law of τ1 +
· · · + τn is denoted as usual by the n-fold convolution ψn∗.

Proposition 2.2 The only invariant measure on [0,1[×R+ of the process (qt ,pt , t ≥ 0) is
given by γ (dq, dp) = dqφ(dp)/μp.

Proof For any bounded Borel function f : [0,1[×R+ �→ R

Ptf (q0,p0)

= 1(t<S0)f (q0 + p0t, p0) + 1(t≥S0)

∞∑

n=1

E

(
1(Sn−1≤t<Sn)f

(
t − Sn−1

τn

,
1

τn

))

= 1(t<S0)f (q0 + p0t, p0) + 1(t≥S0)

∞∑

n=1

∫ t−S0

0
ψ∗(n−1)(ds)

×
∫ +∞

t−S0−s

ψ(dτ)f

(
t − S0 − s

τ
,

1

τ

)

= 1(t<S0)f (q0 + p0t, p0) + 1(t≥S0)

∫ t−S0

0
U(ds)

∫ +∞

t−S0−s

ψ(dτ)f

(
t − S0 − s

τ
,

1

τ

)
,

where we recall that Sn = S0(q,p) + τ1 + · · · + τn and we set ψ∗0(ds) = δ0(ds) and

U([a, b]) =
∞∑

n=1

∫ b

a

ψ∗(n−1)(ds) = δ0([a, b]) +
∞∑

n=1

∫ b

a

ψ∗n(ds), 0 ≤ a ≤ b.
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The renewal measure U(ds) gives the average number of collisions in the time interval ds.
We obtain

Ptf (q0,p0) = 1(t<S0)f (q0 + p0t, p0)

+ 1(t≥S0)

∫ +∞

0
ψ(dτ)

∫ τ∧(t−S0)

0
Ut(ds)f

(
s

τ
,

1

τ

)
(2.1)

where Ut([a, b]) = U([t −b, t −a]) for 0 ≤ a ≤ b ≤ t . By Blackwell’s renewal theorem (see
e.g. [2, Theorem V.4.3]), U([t − b, t − a]) converges to (b − a)/μ as t → +∞. Therefore,
the last expression converges to

∫ +∞

0
ψ(dτ)

∫ τ

0

ds

μ
f

(
s

τ
,

1

τ

)

=
∫ 1

0
dx

∫ +∞

0

τψ(dτ)

μ
f

(
x,

1

τ

)

=
∫

[0,1[×R+
f (x,u)

φ(du)

μu
dx =:

∫

[0,1[×R+
f (x,u)γ (dx, du).

In other words we have for all bounded Borel f : [0,1[×R+ �→ R

lim
t→+∞Ptf (q0,p0) =

∫

[0,1[×R+
f dγ, ∀(q0,p0) ∈ [0,1[×R+.

Since (Pt )t≥0 is a semigroup, we obtain

∫
f dγ = lim

s→+∞Psf (q0,p0) = lim
s→+∞Pt+sf (q0,p0) = lim

s→+∞PsPtf (q0,p0) =
∫

Ptf dγ,

i.e. γ is invariant for (Pt )t≥0. This convergence result for all initial conditions (q0,p0) ∈
[0,1[×R+ implies that γ (dq, dp) is the only invariant measure of the process. �

We remark that the invariant measure γ satisfies

∫
f dγ = E

(
f

(
U,τ−1

) τ

μ

)
, (2.2)

where (U, τ) is independent, U is uniform on [0,1] and τ has same law as τ1. We finally note
that in a statistical ensemble described by the invariant measure γ , the number of particles
hitting point 1 per unit time is proportional to pγ (dq, dp) which explains in heuristic terms
the formula of proposition (2.2).

2.2 The Main Example

The process we study here will be used to build dynamics where the updating of the veloc-
ities simulate the action of a thermal bath acting through a wall. Assume that in our set-up
one wishes to obtain a process whose invariant measure γ (dq, dp) is given by

γ (dq, dp) = 1[0,1](q)1]0,+∞[(p)

√
2β

π
e−β

p2

2 dqdp,



Hot Scatterers and Tracers for the Transfer of Heat in Collisional 693

where β > 0. Then from the above results we see that we must choose the updating distrib-
ution

φβ(p) = 1(p>0)p

√
2β

π
e−β

p2

2
1

∫
R+ u

√
2β

π
e−β u2

2 du

= 1(p>0)βpe−β
p2

2 . (2.3)

The distribution of the interarrival time becomes accordingly

ψβ(dτ) := 1(τ>0)

β

τ 3
exp

(
− β

2τ 2

)
dτ, (2.4)

where we recall that φβ and ψβ are related by

∫
f (v)φβ(v)dv =

∫
f

(
1

τ

)
ψβ(dτ).

3 Wandering Tracers

We consider a gas of M non-interacting tracer particles moving through a one-dimensional
lattice of scatterers wn, n = 0,1, . . . ,N . In between the scatterers, the tracers move with
constant speed in the boxes Ii ,

In = [n − 1, n], n = 1, . . . ,N. (3.1)

When a tracer encounters the scatterer n, it is absorbed and re-emitted on either side accord-
ing to a certain probability distribution with a random speed p distributed according to the
probability density

φβn(p) = pβne
−βn

p2

2 1(p>0), (3.2)

see (2.3). The state space describing the motion of the particle is thus the Cartesian product
of the positions space I = [0,N ] and velocity space R

∗ = R\{0}, � = I × R
∗. At the ex-

tremities of the system the sign of the velocity is reversed but the particle bounces back with
a random speed distributed according to the same law with parameter βL and βR .

The temperature profile that arises from this model is linear:

T (x) = TL + x(TR − TL), x ∈ [0,1].

3.1 Generalities and Physical Observables

In the first model that we study, when a tracer reaches a scatterer n ∈ {1, . . . ,N − 1}, it
is absorbed on one side and re-emitted on the other side with a random speed distributed
according to a law determined by the temperature of the scatterers. The sign of the velocity
changes when and only when the tracer reaches the scatterers 0 or N . We define Xk =
(nk, σk) where

⎧
⎨

⎩
nk = f (|n0 + σ0k|mod2N) , f (i) := N − |N − i|, i = 0, . . . ,2N

σk = σ0(−1)�(k+σ0(n0−N)+N)/N�, k ≥ 1.
(3.3)
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In particular, we have the following periodicity

(Xk)k≥0
d= (Xk+2N)k≥0 under P(n0,σ0) (3.4)

where
d= denotes equality in distribution. We now define the time the particle takes be-

tween two subsequent visits to the scatterers. Conditionally on H = σ((Xk)k≥0), the se-
quence (τk)k≥1 is independent with distribution defined by

P(τk ∈ dτ | H) = P(τk ∈ dτ | Xk) = βn

τ 3
exp

(
− βn

2τ 2

)
1(τ>0)dτ =: ψn(dτ) (3.5)

on the event {Xk = (n,σ )}, where β0, . . . , βN ∈ R+.
Notice that (Xn, τn+1)n≥0 can be interpreted as a Markov renewal process (see [2]), i.e.

(1) (Xn)n≥0 is a Markov chain in the finite state space E

(2) conditionally on H = σ((Xn)n≥0), (τn+1)n≥0 is an independent sequence of positive
random variables such that for all n ≥ 1

P(τk ≤ t | H) = P(τk ≤ t | Xk) = ψn([0, t])
on the event {Xk = n}.

The Markov chain (Xk)k≥0, in fact a deterministic process, is irreducible and positive recur-
rent, with unique invariant probability measure the uniform measure on E.

Given now the Markov chain (Xk)k≥0 with initial state X0 = (n,σ ) and the associated
sequence (τk)k≥1, the time of the first collision with a wall is

S0 = S0(q0,p0) := n0 − q0

p0
> 0,

and the time of the k-th collision with one of the scatterers is

Sk := S0 + τ1 + · · · + τk, k ≥ 1.

Before time S0, the particle moves with uniform velocity p. Between time Sk−1 and time
Sk , the particle moves with uniform velocity σk

τk
and (Sk)k≥0 is the sequence of times when

qt ∈ {0, . . . ,N}. In particular we define the sequence of incoming velocity vk at time Sk

v0 := p0, vk := σk

τk

, k ≥ 1. (3.6)

We define precisely the stochastic process (qt ,pt )t≥0 with values in [0,N ] × R
∗

(qt ,pt ) :=
{

(q0 + p0t, p0) if t < S0,

(nk−1 + σk

τk
(t − Sk−1),

σk

τk
) if Sk−1 ≤ t < Sk, k ≥ 1,

(3.7)

and we use the notation Xk = (nk, σk), Xk−1 = (nk−1, σk−1). Then we have the

Proposition 3.1 The process (qt ,pt )t≥0 is Markov and its only invariant measure on
[0,1] × R

∗ is given by

γ (dq, dp) = 1

ZN

N∑

n=1

1In (q)

(
1(p>0)βn−1e

−βn−1
p2

2 + 1(p<0)βne
−βn

p2

2

)
dqdp (3.8)
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where ZN = √
π
2

∑N

n=1(
√

βn−1 + √
βn).

Proof The proof is analogous to that of Proposition 2.2. The transition matrix of the Markov
chain (Xk)k≥0 is

q(n,σ ),(n′,σ ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n′ = n + σ /∈ {0,N} and σ = σ ′,
1 if (n,σ ) = (1,−1) and (n′, σ ′) = (0,+1),

1 if (n,σ ) = (N − 1,+1) and (n′, σ ′) = (N,−1),

0 otherwise.

(3.9)

We consider the renewal measure

Uα,α′(t) =
∞∑

k=1

Pα

(
Sk ≤ t, Xk = α′) ,

where under Pα the process Xk has the law described above with X0 = α = (i, σ ) a.s. Then

Ptf (q0,p0)

= 1(t<S0)f (q0 + p0t, p0)

+1(t≥S0)

∑

α′,α′′∈E

∫ +∞

0
qα′,α′′ψn′(dτ)

∫ τ∧(t−S0)

0
Ut

α,α′(ds)f

(
n′ + σ ′′s

τ
,
σ ′′

τ

)

where we use the notation α = (n,σ ), α′ = (n′, σ ′), α′′ = (n′′, σ ′′) and the measure
Ut

α,α′(ds) is defined by

Ut
α,β([a, b]) = Uα,β(t − a) − Uα,β(t − b), 0 ≤ a ≤ b ≤ t, α,β ∈ E.

By Blackwell’s Theorem for Markov renewal processes, see e.g. [2, Theorem VII.4.3], we
obtain

lim
t→+∞ Ut

α,β([a, b]) = (b − a)
νβ

μ

where ν is the unique probability invariant measure on E of the Markov chain (Xk)k≥0 and

μ :=
∑

(n,σ )∈E

ν(n,σ )

∫

R+
τψn(dτ) =

√
π

2

∑

(n,σ )∈E

ν(n,σ )

√
βn.

Therefore

lim
t→+∞ Ptf (q0,p0) =

∑

α′,α′′∈E

∫ +∞

0
qα′,α′′ψn′(dτ)

∫ τ

0
ds

να′

μ
f

(
n′ + σ ′′s

τ
,
σ ′′

τ

)

= 1

μ

∑

α′,α′′∈E

να′qα′,α′′
∫ 1

0
dx

∫ +∞

0
τψn′(dτ)f

(
n′ + σ ′′x,

σ ′′

τ

)

=
∫

[0,1]×R

f (q,p)γ (dq, dp).

Since (Pt )t≥0 is a semigroup, it is classical to conclude that γ is the unique invariant proba-
bility measure of (qt ,pt )t≥0. �
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Remark 3.2 Notice that the invariant measure is always explicit, although in general the
process (qt ,pt )t≥0 is not reversible.

The first useful result is the computation of the asymptotic frequency of collision of a
tracer with a fixed scatterer.

Proposition 3.3 For n ∈ {0, . . . ,N} set φn,0 := inf{� ≥ 0 : n� = n},

φn,k+1 := inf{� > φn,k : n� = n}, k ≥ 0

and

Nn
t :=

∞∑

k=1

1(Sφn,k
≤t), N̂n

t :=
∞∑

k=1

21(Sφn,2k
≤t), t ≥ 0. (3.10)

Then for any initial condition (q0,p0), P(q0,p0)-a.s.

lim
t→+∞

Nn
t

t
= lim

t→+∞
N̂n

t

t
= 2

ZN

, if n ∈ {1, . . . ,N − 1}, (3.11)

lim
t→+∞

Nn
t

t
= 1

ZN

, if n ∈ {0,N}. (3.12)

Proof Let n ∈ {1, . . . ,N − 1}. By (3.4), the sequence (Sφn,2(k+1)
− Sφn,2k

)k≥0 is i.i.d. and
therefore we have by the renewal theorem

lim
t→+∞

N̂n
t

t
= 2

E(Sφn,2 − Sφn,0)
=

√
2

π

2
∑N

i=1(
√

βi−1 + √
βn)

.

Since |N̂n
t − Nn

t | ≤ 1, we conclude. �

We next identify the physical quantities of interest. The energy exchanged between the
scatterer n and a particle during a time interval [0, t] is given by

En([0, t]) := 1

2

∑

k≥0:Sk≤t

(
v2

k+1 − v2
k

)
1(nk=n), (3.13)

recall that, by (3.6) and (3.7), vk and vk+1 are respectively the incoming and the outcom-
ing velocity at time Sk . The total entropy flow due to the exchange of energy between the
scatterers and a particle is given by

Sn([0, t]) := −En([0, t])
Tn

, S([0, t]) :=
N∑

n=0

Sn([0, t]). (3.14)

The energy exchanged between scatterers n and (n + 1) during a time interval [0, t] is

Jn→n+1([0, t]) := 1

2

∑

k≥1:Sk≤t

v2
k

(
1(nk−1=n, σk−1=1) − 1(nk−1=n+1, σk−1=−1)

)
. (3.15)
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We define the energy flow per unit time in the stationary state by

En := lim
t→+∞

1

t
En([0, t]). (3.16)

Similarly, the entropy flow per unit time is given by

Sn := lim
t→+∞

1

t
Sn([0, t]), S :=

N∑

n=0

Sn (3.17)

and the current of energy between scatterers wn and wn+1 is given by the transfer of energy
per unit time,

Jn := lim
t→+∞

1

t
Jn→n+1([0, t]). (3.18)

Proposition 3.4 The limits in (3.16), (3.17) and (3.18) exist P(q0,p0) a.s. and for all n =
1, . . . ,N − 1,

En = 2Tn − Tn−1 − Tn+1

ZN

and E0 = T0 − T1

ZN

, EN = TN − TN−1

ZN

, (3.19)

Jn = Tn − Tn+1

ZN

, S = 1

ZN

N−1∑

n=0

(Tn − Tn+1)
2

TnTn+1
≥ 0. (3.20)

Proof Setting Yk := (Xi+2Nk, i = 0, . . . ,2N − 1) ∈ E2N then by (3.4) and the Markov prop-
erty we have that (Yk)k≥0 forms an i.i.d. sequence. Using the notation (3.10) we can write

En([0, t]) = 1

2

∑

k≥0:Sk≤t

(
v2

k+1 − v2
k

)
1(nk=n) = 1

2

Nn
t∑

k=0

(
v2

φn,k+1 − v2
φn,k

)

and define

en
k := 1

2

(
v2

φn,k+1 − v2
φn,k

)
, Ên([0, t]) =

N̂n
t /2∑

k=0

(
en

2k+1 + en
2k

)
.

Notice that en
k is the exchange of energy between the scatterer n and the particle at

the (k + 1)th passage of the particle by the scatterer n. Since (Yk)k≥0 is i.i.d., then
(en

2k+1 + en
2k)k≥0 is also i.i.d. and we obtain by (3.11) and by the law of large numbers for

n ∈ {1, . . . ,N − 1}

lim
t→+∞

1

t
Ên([0, t]) = lim

t→+∞
N̂n

t

2t

2

N̂n
t

Ên([0, t]) = 1

ZN

E(q0,p0)(e
n
1 + en

0).

Now, over a period of 2N transitions of (Xk)k≥0, each scatterer n ∈ {1, . . . ,N − 1} is visited
twice, once coming from the right and once from the left. Therefore

E(q0,p0)(e
n
1 + en

0) = 2Tn − Tn−1 − Tn+1, ∀ n ∈ {1, . . . ,N − 1}.
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Notice now that |Ên([0, t]) − En([0, t])| ≤ |en
Nn

t
| =: Wt . It can be seen that Wt/t → 0 and

therefore we obtain the first relation of (3.19).
If now n ∈ {0,N}, by (3.12)

lim
t→+∞

1

t
En([0, t]) = lim

t→+∞
Nn

t

t

1

Nn
t

En([0, t]) = 1

2

1

ZN

E(q0,p0)(e
n
0).

In particular

1

2
E(q0,p0)

(
e0

0

) = T0 − T1,
1

2
E(q0,p0)

(
eN

0

) = TN − TN−1,

and the proof of (3.19) is complete. The proof of the first relation in (3.20) is similar. The
second relation follows from (3.19) and a summation by parts:

ZN S = −
N−1∑

n=0

(Tn − Tn+1)

(
1

Tn

− 1

Tn+1

)
=

N−1∑

n=0

(Tn − Tn+1)
2

TnTn+1
.

�

3.2 Self-consistency, Fourier’s Law and Temperature Profile

We obtain from (3.19) and (3.20) the following

Proposition 3.5 (Self-consistency condition) The only collection (Tn)n=0,...,N such that

En = 0, n = 1, . . . ,N − 1

with T0 = TL and TN = TR is

Tn = TL + n

N
(TR − TL), n = 0, . . . ,N. (3.21)

The entropy flow per unit time S is equal to 0 if and only if TL = TR .

Note that the condition on the exchange of energy is imposed only for the scatterers. In
contrast, when TL �= TR the tracer will always exchange energy with the boundary walls.

Let us consider now MN (to be fixed) non-interacting tracer particles described by their
momenta and positions (p, q) = (pi, qi)1≤i≤MN

and moving through the array of scatterers.
As the motions of the tracers are independent, the generalization is straightforward. The
corresponding stationary measure is given by

γ MN (dq, dp) =
MN∏

i=1

γ (dqi, dpi) (3.22)

and the total average current between scatterers wn and wn+1 is the sum of the contribution
of each particle in (3.20)

J MN
n = MN

Tn − Tn+1

ZN

. (3.23)

The total rate of energy exchanged between the scatterer wn and the tracers in the stationary
state is given by

E MN
n = MN

2Tn − Tn−1 − Tn+1

ZN

. (3.24)
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Thus, if the self-consistency condition is imposed and the temperatures of the scatterers is
given by (3.21), then, by (3.23), one has

J MN
n = − MN

NZN

(TR − TL). (3.25)

The local conductivity is defined as the ratio of the average current of energy to the local
temperature gradient, namely,

κn ≡ lim
N→∞

J MN
n

Tn − Tn+1
= lim

N→∞
MN

ZN

. (3.26)

If the temperature profile is given by (3.21), then one may compute the explicit asymptotic
behavior of ZN in the large N limit

lim
N→∞

ZN

N
= √

2π

∫ 1

0

dx

(TL + x(TR − TL))
1
2

= 2
√

2π

T
1
2

R + T
1
2

L

. (3.27)

Thus for a number of tracers MN = o(N), we have κn = 0. This is because when the number
of scatterers increases, the proportion of time that a given tracer spends carrying energy
from scatterer wn to wn+1 goes to zero simply because the tracer must go back and forth
in a larger and larger system. However, we see that if we take as many tracer particles as
scatterers, namely MN = N , then Fourier’s law holds, i.e the conductivity is finite. Its value
is given by

κn = T
1
2

R + T
1
2

L

2
√

2π
. (3.28)

Notice that κn does not depend on n. In particular, if TL = TR = T

κn =
√

T

2π
. (3.29)

3.3 Cumulant Generating Function and the Gallavotti-Cohen Symmetry Relation

We denote B = (β0, . . . , βN) ∈ R
N+1
+ . We do not need in this section to assume that Ti :=

β−1
i satisfy (3.21). Fix n ∈ {0, . . . ,N −1}. We are going to compute and study the properties

of the cumulant generating function,

fn(λ, B) := lim
t→+∞

1

t
log E (exp (−λJn([0, t]))) , ∀λ ∈ R. (3.30)

We define �n(α) := (1(i=n, σ=1) − 1(i=n+1, σ=−1)) for α = (i, σ ) ∈ E. For λ ∈ R and ε ≥ 0,
we define

Cn(α,λ, ε) := βi

∫ +∞

0
ve− ε

v −(βi+λ�n(α)) v2
2 dv ∈ [0,+∞], α = (i, σ ) ∈ E, (3.31)

and the function Fn, which is crucial in the computation of fn(λ, B),

Fn(λ, ε, B) :=
∏

α∈E

Cn(α,λ, ε).
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The function Fn will be identified below with the spectral radius of some matrix.
We anticipate a striking feature of our model: for βn �= βn+1, the cumulant generating

function fn(·, B) is not analytic around λ = 0.1 In particular, fn(·, B) > 0 for λ in a left
neighborhood of 0, while fn(·, B) = 0 in a right neighborhood of 0. See Remark 3.7 and
Sect. 3.4 below for further discussions.

Proposition 3.6 For any λ ∈ R the limit in (3.30) exists in [0,+∞].
(1) If βn ≤ βn+1 then ∀λ ∈]−βn,0[∪ ]βn+1 − βn,βn+1[, fn(λ, B) is given by the unique

solution ε0 > 0 to the equation

Fn(λ, ε0, B) = 1.

(2) If λ ∈ [0, βn+1 − βn], then fn(λ, B) = 0.
(3) If λ /∈]−βn,βn+1[ then fn(λ, B) = +∞.

The function fn(·, B) is convex and continuous over ]−βn,βn+1[ and satisfies the Gallavotti-
Cohen symmetry relation

fn(λ, B) = fn(βn+1 − βn − λ, B). (3.32)

Proof We call a family of σ -finite measures Fα,α′(dτ) on [0,+∞[, indexed by (α,α′) ∈
E ×E, a kernel. Given two kernels F and G we define their convolution F ∗G as the kernel

(F ∗ G)α,α′([0, t]) :=
∑

γ∈E

∫ t

0
Fα,γ (dτ)

∫ t−τ

0
Gγ,α′(ds). (3.33)

We can reduce to the case of q0 ∈ {0, . . . ,N}, so that S0 = 0. We set

Zα,α′(t) := Eα

(
exp (−λJn([0, t]))1(XNt =α′)

)

= Eα

(
exp

(
−λ

2

Nt∑

k=1

v2
k�n(Xk−1)

)
1(XNt =α′)

)

where we recall that �n(α) := (1(i=n, σ=1) − 1(m=i+1, σ=−1)) for α = (i, σ ), and

Nt :=
∞∑

k=1

1(Sk≤t).

Let us also set for α = (i, σ ) and α′ = (i ′, σ ′)

Mα,α′(dτ) := qα,α′ψi(dτ) exp

(
−λ�n(α)

2τ 2

)

= qα,α′
βi

τ 3
exp

(
−(βi + λ�n(α))

1

2τ 2

)
1(τ>0)dτ. (3.34)

1When βn = βn+1, fn(·, B) is analytic around λ = 0.
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By summing over all possible values of Nt we obtain

Zα,α′(t) = Pα(τ1 > t)δα,α′ +
∞∑

�=1

Eα

(
1(Nt =�) exp

(
−λ

2

�∑

k=1

v2
k�n(Xk)

)
1(X�=α′)

)

= Pα(τ1 > t)δα,α′ +
∞∑

�=1

M�∗
α,α′([0, t]),

where M�∗ is the convolution of M with itself � times. Let us set for ε ≥ 0

Bε
α,α′ :=

∫ +∞

0
e−ετMα,α′(dτ) = qα,α′βi

∫ +∞

0
v exp

(
− ε

v
− (βi + λ�n(α))

v2

2

)
dv

= qα,α′Cα(λ, ε),

where Cα(λ, ε) is defined in (3.31), and let us denote

Bα,α′ = B0
α,α′ = qα,α′βi

∫ +∞

0
v exp

(
−(βi + λ�n(α))

v2

2

)
dv = qα,α′βi

βi + λ�n(α)
.

The case λ ∈]−βn,βn+1[. In this case, with analogous notations, Cα(λ, ε) = +∞ and there-
fore Zα,α′(t) = +∞ for all t . Therefore we obtain that the limit in (3.30) exists and is equal
to +∞.

The case λ ∈]−βn,0[∪ ]βn+1 − βn,βn+1[. Because of the explicit form of the coefficients,
we have

Bα,α′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qα,α′ , α /∈ {(n,+1), (n + 1,−1)}
βn

βn+λ
qα,α′ , α = (n,+1)

βn+1
βn+1−λ

qα,α′ , α = (n + 1,−1)

where qα,α′ is defined in (3.9). Recall that Q := (qα,α′)α,α′∈E is a permutation matrix, more
precisely a cyclic permutation of E. The matrix B is obtained by replacing two non-zero
elements of Q with, respectively, βn

βn+λ
and βn+1

βn+1−λ
. The characteristic polynomial of B is

therefore equal to

p(t) = t2N − βn

βn + λ
· βn+1

βn+1 − λ
.

Recall that we assume βn ≤ βn+1. Since λ ∈]−βn,0[∪ ]βn+1 − βn,βn+1[,
βnβn+1 > βnβn+1 + λ(βn+1 − βn − λ) = (βn + λ)(βn+1 − λ) > 0,

and therefore B has spectral radius

ρ(B) =
(

βn

βn + λ
· βn+1

βn+1 − λ

) 1
2N

> 1.

Let us go back to the matrix Bε = (Bε
α,α′)α,α′∈E . In this case, all non-zero elements of B are

modified. Indeed, if Bα,α′ > 0, then Bε
α,α′ = Cα(λ, ε), defined as in (3.31). Therefore, the
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characteristic polynomial is

pε(t) = t2N −
∏

α∈E

Cα(λ, ε) = t2N − F(λ, ε).

Therefore, the spectral radius of Bε is

ρ(Bε) = (Fn(λ, ε, B))
1

2N .

Since Bε is an irreducible matrix with non-negative entries, by the Perron-Frobenius the-
orem [2, Theorem I.6.5], ρ(Bε) is an eigenvalue of Bε with multiplicity 1; moreover this
eigenvalue is associated with a right-eigenvector (rα) and a left-eigenvector (lα) such that
rα > 0 and lα > 0 for all α ∈ E.

Since ε → ρ(Bε) is strictly decreasing with value ρ(B) > 1 at ε = 0 and 0 limit as
ε → +∞, then there exists a unique ε0 such that Fn(λ, ε0, B) = 1. Let us set

Ẑα,α′(t) := e−ε0tZα,α′rα′

rα

, M̂α,α′(dτ) := e−ε0τMα,α′(dτ)rα′

rα

.

By construction, M̂ is a semi-Markov kernel, i.e.

∑

α′∈E

∫ +∞

0
M̂α,α′(dτ) = 1, ∀ α ∈ E.

Moreover, Ẑα,α′(t) satisfies

Ẑα,α′(t) = e−ε0t
Pα(τ1 > t)δα,α′ +

∞∑

�=1

M̂�∗
α,α′([0, t]).

Let now (X̂k, τ̂k+1)k≥0 be a Markov renewal process with kernel M̂ . Then we can write

Ûα,α′([0, t]) :=
∞∑

�=1

M̂�∗
α,α′([0, t]) =

∞∑

�=1

Pα(τ̂1 + · · · + τ̂� ≤ t, X̂� = α′).

Notice that the kernel M̂ has finite mean:

μ̂ :=
∑

α,α′∈E

∫ +∞

0
τ ν̂αM̂α,α′(dτ) ∈ (0,∞),

where ν̂α′ = lα′/
∑

γ lγ is the unique invariant measure of X̂ on E. Then, by the Markov
Renewal theorem [2, Theorem VII.4.3]

lim
t→+∞

1

t
Ûα,α′([0, t]) = ν̂α′

μ̂
. (3.35)

Therefore we obtain

Zα,α′(t) = Pα(τ1 > t)δα,α′ + eε0t Ûα,α′([0, t]) rα

rα′
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and summing over α′ ∈ E

E (exp (−λJn([0, t]))) = Pα(τ1 > t) + eε0t rα

∑

α′

Ûα,α′([0, t])
rα′

and therefore,

fn(λ, B) = lim
t→+∞

1

t
log E (exp (−λJn([0, t]))) = ε0.

The case λ ∈ [0, βn+1 − βn]. In this case we have ρ := ρ(B) ∈]0,1]. Recall that

Zα,α′(t) = Pα(τ1 > t)δα,α′ +
∞∑

�=1

M�∗
α,α′([0, t]) ≥ Pα(τ1 > t)δα,α′ ,

where for α = (i, σ ) and α′ = (i ′, σ ′)

Pα(τ1 > t) =
(

1 − e
−βi

1
2t2

)

and summing over α′ ∈ E

E (exp (−λJn([0, t]))) ≥ Pα(τ1 > t) =
(

1 − e
− βi

2t2

)
,

and therefore

lim inf
t→+∞

1

t
log E (exp (−λJn([0, t]))) ≥ lim inf

t→+∞
1

t
log

(
1 − e

− βi

2t2

)

∼ lim
t→+∞

1

t
log

(
βi

2t2

)
= 0. (3.36)

Now, let us set

M̃α,α′(dτ) := Mα,α′(dτ)rα′

ρrα

.

By construction, M̃ is a semi-Markov kernel, i.e.

∑

α′∈E

∫ +∞

0
M̃α,α′(dτ) = 1, ∀ α ∈ E.

Moreover, Zα,α′(t) satisfies

Zα,α′(t) = Pα(τ1 > t)δα,α′ +
∞∑

�=1

ρ−�M̃�∗
α,α′([0, t]).

Let now (X̃k, τ̃k+1)k≥0 be a Markov renewal process with kernel M̃ . Then we can write

Ũα,α′([0, t]) :=
∞∑

�=1

M̃�∗
α,α′([0, t]) =

∞∑

�=1

Pα(τ̃1 + · · · + τ̃� ≤ t, X̃� = α′).
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Notice that the kernel M̃ has finite mean:

μ̃ :=
∑

α,α′∈E

∫ +∞

0
τ ν̃αM̃α,α′(dτ) ∈ (0,∞),

where ν̃α′ is the unique invariant measure of X̃ on E. Indeed, by (3.34), Mα,α′(dτ) ∼ Cτ−3

as τ → +∞. Then, by the Markov Renewal theorem [2, Theorem VII.4.3]

lim
t→+∞

1

t
Ũα,α′([0, t]) = ν̃α′

μ̃
. (3.37)

Therefore we obtain

Zα,α′(t) ≤ δα,α′ + Ũα,α′([0, t]) rα

rα′

and summing over α′ ∈ E

E (exp (−λJn([0, t]))) ≤ 1 +
∑

α′∈E

Ũα,α′([0, t]) rα

rα′
≤ C(1 + t),

for some constant C > 0. Hence

lim sup
t→+∞

1

t
log E (exp (−λJn([0, t]))) ≤ lim sup

t→+∞
1

t
log (C(1 + t)) = 0. (3.38)

By (3.36) and (3.38) we obtain

fn(λ, B) = lim
t→+∞

1

t
log E (exp (−λJn([0, t]))) = 0.

Continuity and convexity of fn(·, B). It is a standard fact that

∂2

∂λ2

1

t
log E (exp (−λJn([0, t]))) = 1

t

E(J 2
n ([0, t])e−λJn([0,t])) − (E(Jn([0, t])e−λJn([0,t])))2

(E(e−λJn([0,t])))2

is non-negative, so by passing to the limit t → +∞, fn(·, B) is convex and finite and there-
fore continuous.

The Gallavotti-Cohen Symmetry Relation Equation (3.32) follows from the analogous
symmetry of F

Fn(λ, ε, B) = Fn(βn+1 − βn − λ, ε, B). �

Remark 3.7 The proof shows that the lack of analyticity of fn(·, B) is related to the tail of the
distribution of τi or, equivalently, to the probability of having slow particles in the system.
Indeed, the crucial estimate (3.36), which shows that fn ≥ 0, follows from the polynomial
decay of the probability that a particle takes an amount of time t to reach the next scatterer,
namely P(τi > t) ∼ t−2, t → +∞. This is also related to the absence of spectral gap of the
dynamics. Physically, the origin of this phenomenon is the fact that the particle may get
an arbitrarily small speed (taking thus an arbitrarily large amount of time before the next
collision) which prevents the system from converging exponentially fast to the stationary
state. This should not be regarded as an artefact of the model but rather as a general feature
of collisional dynamics. We leave a more complete study of the convergence to the invariant
measure to future work.



Hot Scatterers and Tracers for the Transfer of Heat in Collisional 705

3.4 Green-Kubo Formula and Fluctuation-Dissipation Relations

It is well-known that the Gallavotti-Cohen symmetry (3.32) implies the identification of the
thermal conductivity with the variance of the time-integrated current, a relation known as the
Green-Kubo formula. See for instance [17, 18] for a derivation of this fact in the context of
chains of anharmonic oscillators, where the analyticity of the cumulant generating function
is proven under suitable hypothesis on the interaction potentials.

In fact, the Gallavotti-Cohen symmetry (3.32) implies a relation between certain par-
tial derivatives of the cumulant generating function fn, which is correct if the generating
function is smooth for λ close to 0. The identification of the partial derivatives of fn with
the physical quantities of interest, namely the thermal conductivity and the variance of the
current, requires an exchange of limits which is often hard to justify.

In our models, as remarked before Proposition 3.6, the cumulant generating function is
not smooth for λ close to 0 and βn �= βn+1 and therefore the computations which are usu-
ally performed require some care. We are nevertheless able to obtain the desired results,
by considering only left-derivatives when needed and by showing directly that the physi-
cal quantities of interest satisfy the expected relations. Notice that we shall denote for any
function g : ]−ε, ε[ �→ R

g(0−) := lim
t↑0

g(t), g(0+) := lim
t↓0

g(t),

whenever any of such limit exists.

Proposition 3.8 Let B = (β0, . . . , βN) ∈ R
N+1
+ . If 0 < βn < βn+1 then

∂fn

∂λ
(0−, B) = −Tn − Tn+1

ZN

= −Jn,

where Ti = β−1
i , see (3.20).

Proof We consider λ ∈]−βn,0[. Then by Proposition 3.6, fn(λ, B) > 0 is defined by the
relation Fn(λ,fn(λ, B), B) = 1. Hence by the implicit function Theorem

∂fn

∂λ
(λ, B) = −∂Fn

∂λ
(λ,fn(λ, B), B)

(
∂Fn

∂ε
(λ,fn(λ, B), B)

)−1

.

A computation yields

∂Fn

∂λ
(λ, ε, B) =

∏

α∈E\{(n,1),(n+1,−1)}
Cα(0, ε)

· βnβn+1

∫

R
2+

v1v2
1

2

(
v2

2 − v2
1

)
exp

(
− ε

v1
− ε

v2

− (βn + λ)
v2

1

2
− (βn+1 − λ)

v2
2

2

)
dv1dv2,

and

∂Fn

∂ε
(λ, ε, B) =

∑

α=(i,σ )∈E

βi

∫

R+
v

1

v
exp

(
− ε

v
− (βi + �n(α)λ)

v2

2

)
dv

∏

α′∈E\{α}
Cα′(λ, ε).
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Since fn(0, B) = 0, by letting λ ↑ 0 we find

∂fn

∂λ
(0−, B) =

βnβn+1

∫
R

2+
v1v2

1
2 (v2

2 − v2
1)e

−βn
v2
1
2 −βn+1

v2
2
2 dv1dv2

∑
α=(i,σ )∈E βi

∫
R+ exp(−βi

v2

2 )dv

=
1

βn+1
− 1

βn

∑
α=(i,σ )∈E

√
πβi

2

= Tn+1 − Tn

ZN

.

�

We consider now the equilibrium case β0 = · · · = βN = β > 0.

Proposition 3.9 Let Beq := (β, . . . , β) ∈ R
N+1
+ , β > 0. Then the function ]−β,β[� λ �→

fn(λ, Beq) is analytic, even and

∂fn

∂λ
(0, Beq) = 0,

∂2fn

∂λ2
(0, Beq) = 1

N

√
2

πβ5
.

Proof The relation fn(λ, Beq) = fn(−λ, Beq) follows from the Gallavotti-Cohen symmetry
(3.32). The analyticity follows from the implicit function theorem.

Since Tn = Tn+1, we know by Proposition 3.8 that ∂fn

∂λ
(0, Beq) = 0. We consider λ ∈

]−β,0[. Then by Proposition 3.6, fn > 0 is defined by the relation Fn(λ,fn(λ, Beq), Beq) = 1.
Hence, differentiating this relation w.r.t. λ and then setting λ = 0 we obtain, since
fn(0, Beq) = ∂fn

∂λ
(0, Beq) = 0,

∂2fn

∂λ2
(0, Beq) = −∂2Fn

∂λ2
(0,0, Beq)

(
∂Fn

∂ε
(0,0, Beq)

)−1

.

The desired result follows from an explicit computation analogous to that in the proof of
Proposition 3.8. �

Let n ∈ {0, . . . ,N − 2} and for 0 ≤ �β < β , let us set

βi := β > 0, i /∈ {n,n + 1}, βn := β − �β

2
, βn+1 := β + �β

2
,

and let us set B(�β) := (β0, . . . , βN). Notice that B(0) = Beq. Let us set

A := {(λ,�β) : �β ∈ [0, β[, λ ∈]−β,β − �β[}

and gn : A �→ R+

gn(λ,�β) := fn (λ, B(�β)) , ∀ (λ,�β) ∈ A.

Proposition 3.10 We have the Green-Kubo relation

∂2gn

∂λ2
(0,0) = −2

∂

∂�β

∂gn

∂λ
(0,0) = 1

N

√
2

πβ5
.
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Proof Notice first that gn(λ,0) = fn(λ,0) is analytic around λ = 0, so that

∂2gn

∂λ2
(0,0) = ∂2fn

∂λ2
(0, Beq) = 1

N

√
2

πβ5

by Proposition 3.9. Now, for fixed �β > 0, we have by Proposition 3.8

∂gn

∂λ
(0,�β) = −β−1

n − β−1
n+1

ZN(B)

= − �β

βnβn+1

√
2

π

(
(2N − 4)

√
β + 2

√
β − �β + 2

√
β + �β

)−1
.

Therefore

∂

∂�β

∂gn

∂λ
(0,0) = 1

N

√
1

2πβ5

and the result is proven. �

Remark 3.11 It is possible to prove directly that at equilibrium, i.e. β0 = · · · = βN = β > 0,

lim
t→+∞

1

t
E

(
(Jn([0, t]))2

) = 1

N

√
2

πβ5
= ∂2fn

∂λ2
(0, Beq),

which shows that the formal exchange of limits in t → +∞ and in λ → 0− in the formula

∂2

∂λ2

1

t
log E (exp (−λJn([0, t])))

yields indeed a correct result. Using the Gallavotti-Cohen symmetry one can prove both
Proposition 3.10 and the further equality

∂2gn

∂λ2
(0,0) = −2

∂

∂λ

∂gn

∂�β
(0,0) = −2

∂

∂�β

∂gn

∂λ
(0,0) = 1

N

√
2

πβ5
.

4 Confined Tracers

4.1 Generalities and Physical Observables

In this section, we introduce a model which gives rise to a qualitatively different behavior
for the self-consistent temperature profile. The self-consistent temperature profile of the
scatterers in the wandering tracers model was linear. We will see that in the case of confined
tracers, the temperature profile becomes non-linear, in particular equal to

T (x) =
(

T
3
2

L + x
(
T

3
2

R − T
3
2

L

)) 2
3

, x ∈ [0,1].

A major difference between the two models is the dependence of the thermal conductivity
on the set of temperatures of the scatterers. For an arbitrary temperature distribution of



708 R. Lefevere, L. Zambotti

the scatterers, we have seen that in the case of wandering tracers, the conductivity was
identified with a frequency of collisions of a tracer with two neighboring scatterers. As such
and because the wandering tracer travels through the whole system, it was dependent on the
temperature of every scatterer. In the case of confined tracers, the conductivity is a purely
local function of the set of temperatures.

In this model, the disposition of the scatterers is the same but there are exactly N tracer
particles locked in between the scatterers, including the ones on the boundaries. The n-th
particle moves in between the scatterers, in the interval In = [n − 1, n], being reflected at
the scatterers wn−1 and wn with a random speed p distributed according to

φβn(p) = pβne
−βn

p2

2 1(p>0). (4.1)

Because the particle is reflected, the sign in the distribution is the opposite of the sign
of the incoming velocity. Those models are described by N independent Markov renewal
processes. Each scatterer exchanges energy with its two adjacent tracer particles and in or-
der to express the self-consistency condition, we must introduce notations to describe the
motion of each tracer.

We describe now the motion of the n-th particle traveling between scatterers wn

and wn+1. We consider the same construction as in (3.3), with N = 1, i.e. Xn
0 = (n0, σ0) ∈

{n,n + 1} × {+1,−1} with σ0 = +1 if n0 = n, σ0 = −1 otherwise, and

Xn
k = (

n0 + σ0((−1)k − 1)/2, σ0(−1)k
)
, k ≥ 1.

We define accordingly the sequence (τ n
k )k≥1 and the process (qn

t ,pn
t )t≥0 analogously to (3.5)

and (3.7). Then, in analogy with Proposition 3.1, we have the result

Proposition 4.1 The process ((qn
t ,pn

t )t>0)0≤n≤N−1 is Markov and its only invariant measure
is given by

μ(p,q) = 1

ẐN

N−1∏

n=0

1In (qn)

[
1(pn>0)βne

−βn
p2
n
2 + 1(pn<0)βn+1e

−βn+1
p2
n
2

]
(4.2)

where β0 = βL and βN = βR and ZN is the normalization constant,

ẐN :=
N−1∏

n=0

Zn, Zn :=
(

πβn

2

) 1
2 +

(
πβn+1

2

) 1
2

. (4.3)

The energy En([0, t]) exchanged between the scatterer n and its two neighboring particles
during a time interval [0, t], the energy Jn→n+1([0, t]) exchanged between scatterers n and
(n + 1) during a time interval [0, t], the total entropy flow Sn([0, t]) and S([0, t]) due to the
exchange of energy between the scatterers and a particle, can be defined as in, respectively,
(3.13), (3.15) and (3.14). The energy flow per unit time En in the stationary state, the entropy
flow per unit time Sn and S , and the average current of energy per unit time Jn between wn

and wn+1, can be defined as in, respectively, (3.16), (3.17) and (3.18).
As in the case of wandering tracers (Proposition 3.4), we can study the above limits

defining the physical properties of the model. As compared to Proposition 3.4, the main
difference resides in the expression of the energy exchanged En with the system. This is the
origin of the difference in the shapes of the temperature profiles of the two models.
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Proposition 4.2 For all n = 1, . . . ,N − 1,

En = Tn − Tn−1

Zn−1
+ Tn − Tn+1

Zn

and E0 = T0 − T1

Z0
, EN = TN − TN−1

ZN−1
, (4.4)

Jn = Tn − Tn+1

Zn

, S =
N−1∑

n=0

(Tn − Tn+1)
2

ZnTnTn+1
≥ 0. (4.5)

The proof is completely analogous to that of Proposition (3.4) and we do not repeat it.
The main feature of the proof is again that by using the renewal theorem, the conductivity

κn = Jn

Tn − Tn+1
= 1

Zn

appears as a frequency of collision of the tracer with the walls of the box to which it is
confined.

4.2 Self-Consistency Condition, Temperature Profile and Fourier’s Law

We now derive the consequence of the self-consistency condition En = 0, n = 1, . . . ,N − 1
on the shape of the temperature profile.

We set

gN(x) :=
N−1∑

i=0

1[ i
N

, i+1
N

[(x)N(Ti+1 − Ti)

and

hN(x) := TL +
∫ x

0
gN(t)dt.

Notice that hN(i/N) = Ti and that hN linearly interpolates between these values.

Proposition 4.3 (Self-consistency) The only collection (Tn)n=0,...,N such that

En = 0, n = 1, . . . ,N − 1

with T0 = TL and TN = TR , is the solution of

Tn − Tn+1

T
− 1

2
n + T

− 1
2

n+1

+ Tn − Tn−1

T
− 1

2
n + T

− 1
2

n−1

= 0, 1 ≤ n ≤ N − 1. (4.6)

In this case, when N → +∞, hN converges uniformly to the function

h(x) :=
(

T
3
2

L + x
(
T

3
2

R − T
3
2

L

)) 2
3

, x ∈ [0,1], (4.7)

unique solution of the equation
⎧
⎨

⎩
(h

1
2 h′)′ = 0, x ∈]0,1[,

h(0) = TL, h(1) = TR.
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Proof We first note that (4.6) implies that hN is a solution of the elliptic equation

∫ 1

0
aNh′

Nϕ′dx = 0, ∀ϕ ∈ C∞
c (0,1),

where

aN(x) :=
N−1∑

i=0

1[ i
N

, i+1
N

[(x)
1

T
− 1

2
i + T

− 1
2

i+1

= 1

(hN(�xN�/N))− 1
2 + (hN(�xN�/N))− 1

2

.

This can be seen by writing,

∫ 1

0
aNh′

Nϕ′dx =
N−1∑

i=0

N
Ti+1 − Ti

T
− 1

2
i + T

− 1
2

i+1

∫ i+1
N

i
N

ϕ′(x)dx

=
N−1∑

i=0

N
Ti+1 − Ti

T
− 1

2
i + T

− 1
2

i+1

(
ϕ

(
i + 1

N

)
− ϕ

(
i

N

))
, (4.8)

summing by parts this last equation and using (4.6). We are going to show below that the
sequence of functions gN is bounded in L2(0,1). As every subsequence is also bounded,
one can extract from every subsequence a subsubsequence, weakly converging to some
g ∈ L2(0,1). Correspondingly, from every subsequence of hN , one can thus extract a sub-
subsequence converging uniformly (in x). Since the convergence is uniform, every limit
function h obtained in this way satisfies

0 =
∫ 1

0
aNh′

Nϕ′dx →
∫ 1

0
2h

1
2 h′ϕ′dx,

i.e.
(
h

1
2 h′

)′ = 0.

with boundary conditions h(0) = TL, h(1) = TR . This equation admits a unique solution
given by (4.7). This implies that all the subsubsequences constructed above converge to
(4.7) and thus that the full sequence hN converges to it as well. We show now that the
sequence gN is bounded in L2(0,1) norm. Multiplying (4.6) by Tn and summing by parts,
we obtain

N−2∑

n=1

(Tn − Tn+1)
2

T
− 1

2
n + T

− 1
2

n+1

= TN

TN − TN−1

T
− 1

2
N + T

− 1
2

N−1

− T1
T1 − T0

T
− 1

2
1 + T

− 1
2

0

.

Let us suppose that TR = TN+1 ≥ T0 = TL. Then, because (4.6) implies that the sign of
the sequence (Tn+1 − Tn) is constant, we have Tn+1 ≥ Tn for all n = 0, . . . ,N − 1, and in
particular T0 ≤ Tn ≤ TN . One also obtains that

Tn+1 − Tn = T
− 1

2
n + T

− 1
2

n+1

T
− 1

2
n + T

− 1
2

n−1

(Tn − Tn−1) ≤ Tn − Tn−1,
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so that the function T is increasing and concave. In particular,

(N − 2)
(TN − TN−1)

2

2T
− 1

2
R

≤
N−2∑

n=1

(Tn − Tn+1)
2

T
− 1

2
n + T

− 1
2

n+1

≤ TN−1
TN − TN−1

T
− 1

2
N + T

− 1
2

N−1

≤ T
3
2

R (TN − TN−1),

and therefore TN − TN−1 ≤ T
3
2

L /(N − 2). In particular,

N

N−2∑

n=1

(Tn − Tn+1)
2 ≤ 1

2T
3
2

R

N−2∑

n=1

(Tn − Tn+1)
2

T
− 1

2
n + T

− 1
2

n+1

≤
(

TL

TR

) 3
2

. (4.9)

By (4.9) we have that

∫ 1

0
g2

Ndx = N

N∑

n=0

(Tn − Tn+1)
2 ≤ C

which shows that the sequence gN is bounded in L2(0,1). �

We define the local thermal conductivity by

κ(x) = lim
N→∞

κ�Nx�

for x ∈ [0,1]. Its numerical value is easy to obtain,

lim
N→∞

κ�Nx� = lim
N→∞

Z−1
�Nx� = lim

N→∞

[(
πβ�Nx�

2

) 1
2 +

(
πβ�Nx�+1

2

) 1
2
]−1

=
√

h(x)

2π
,

where h is the function (4.7). Unlike (3.28), in this case the local conductivity has a spatial
dependence.

4.3 Cumulant Generating Function and the Gallavotti-Cohen Symmetry Relation

By the results of Sect. 3.3 in the particular case of N = 1 we can compute the cumulant
generating function of the energy current Jn([0, t]) between scatterers wn and wn+1

f (λ,βn,βn+1) := lim
t→+∞

1

t
log E (exp (−λJn([0, t]))) , ∀λ ∈ R. (4.10)

We define for β > 0, η ≥ 0 and λ ∈ R

C(β,λ,η) := β

∫ +∞

0
ve− η

v −(β+λ) v2
2 dv, (4.11)

and

F(λ,η,βn,βn+1) := C(βn,λ, η)C(βn+1,−λ,η). (4.12)

Then we have
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Proposition 4.4 Recall that βn ≤ βn+1. Then

(1) ∀λ ∈]−βn,0[∪ ]βn − βn,βn+1[, f (λ,βn,βn+1) is given by the unique solution η0 > 0
to the equation

F(λ,η0, βn,βn+1) = 1.

(2) If λ ∈ [0, βn+1 − βn], then f (λ,βn,βn+1) = 0.
(3) If λ /∈]−βn,βn+1[, then f (λ,βn,βn+1) = +∞.

The function f (·, βn,βn+1) is convex and continuous over ]−βn,βn+1[ and satisfies the
Gallavotti-Cohen symmetry relation

f (λ,βn,βn+1) = f (βn+1 − βn − λ,βn,βn+1) (4.13)

and f (·, βn,βn+1) is analytic on ]−βn,0[∪ ]βn+1 − βn,βn+1[.

5 Conclusions and Prospects

In the tracers-scatterers models introduced in this paper, we were able to show the validity
of Fourier’s law and interpret the thermal conductivity as the collision frequency between
tracers and scatterers. This comes naturally as a consequence of the renewal theorem for
Markov renewal processes. We have recovered the two types of temperature profiles ob-
served in deterministic systems described by local collisional dynamics. We were also able
to study in details the cumulant generating function of the time-integrated current, showing
in particular its lack of analyticity. We have provided a formula allowing the computation of
cumulants of any order in and out of equilibrium. In particular we have shown the validity
of the Green-Kubo formula in our models.

Natural problems to study in future works are the large deviations properties and con-
vergence to the invariant measure of those models. They may be also further extended and
studied in different interesting ways. One possible extension is to consider cases where
the tracers are transmitted or reflected according to some non-trivial probability distribu-
tion. In that case, the Markov chain associated to the Markov renewal process becomes
non-deterministic. Although we have provided an explicit form for the invariant measure
covering that case too, it would be interesting to study in details the dynamical proper-
ties of those systems. In particular, it appears that breaking the right-left symmetry in the
transmission-reflection rules induces a modification of the stationary current which enters
into competition with the current driven by the temperature gradient imposed in the system.
It could be also interesting to consider models, as in [8], where the velocity of the tracer
remains unaffected by the scatterers with some positive probability.
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